
PdGst - GStreamer bindings for Pd

IOhannes m zmölnig
Institute of Electronic Music and Acoustics

University of Music and Dramatic Arts
Graz, Austria

zmoelnig@iem.at

ABSTRACT
In this paper we present PdGst, a language binding of the
popular GStreamer framework to the Pd-world. On the Pd
side, this enables simple handling of multi-threaded media-
pipelines. On the GStreamer side, the bene�ts lay mainly in
the ease of
onstru
tion of new pipelines within the pat
her
paradigm and in the simpli
ity of
ontrol of and intera
-
tion with GStreamer (GST) elements within the Pure data
environment.

Keywords
Pure data, GStreamer, frameworks, multimedia

1. MOTIVATION
Pure data (in
luding it's various extensions)
laims to be

useable as a linear produ
tion tool. This
laim holds true
in Pd's
ore domain, live audio pro
essing (with the main
domain-spe
i�
 interfa
e to the real world being the sound

ard). To a
ertain extent, this
laim holds true for di�erent
domains like live video pro
essing as well, as long as the set
of interfa
es to the real world is
on�ned to �live� interfa
es,
e.g. video
apture
ards and VGA output.
However, things start to be
ome more
ompli
ated when

the interfa
es are wrapped into
ontainers, as is usual with
�les and (worse) with streaming media.
Interfa
ing with �les is - to a
ertain extent - made easy

on proprietary platforms like Ma
-OS or W32, where the
operating system provides a uni�ed API for a

essing this
data. Unfortunately on free operating systems like Linux no
su
h uni�ed API has established itself yet, and few of the
existing APIs are supported by the various Pd extensions.
Interfa
ing with more
omplex media like network streams

is barely supported at all, no matter whi
h platform.
While there are solutions for pushing network streams,

these seem to be unstable and expose in
onsistent inter-
fa
es to the user. In pra
ti
e, the authors be
ame extremely
frustrated when trying to
reate either multi
hannel au-
dio streams (e.g. a 10-
hannel ogg/vorbis stream using the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. PdCon09, July 19-26, 2009, São Paulo, SP, Brazil.
Copyright remains with the author(s).
Copyright 2009. Copyright remains with the author(s).

pdogg-library[3℄, whi
h works well enough for stereo streams)
or a simple ogg/theora video stream (using [pdp_theoni
e�℄
whi
h is part of the PiDiP-library[2℄).
Due to approa
hing deadlines, no time was invested into

debugging and �xing the existing obje
ts, but instead the
streaming was re-written from s
rat
h with the apparently
stable GStreamer[5℄ framework.
Sin
e GStreamer la
ks an interfa
e like Pd for real time

intera
tion, the need for a bridge between these two (similar)
worlds was re
ognised.

2. INTRODUCTION
�GStreamer is a framework for
reating streaming media

appli
ations� [4℄. It is a high-performan
e, heavily multi-
threaded,
ross-platform framework that is based on graphs
of low-level media-handling
omponents, allowing appli
a-
tion developers to
reate appli
ations that read media-streams
from virtually any sour
e (devi
es, �les, network-streams,
generators,. . .), apply transformations on them, demulti-
plex and multiplex them and �nally output these streams
to virtually any sink (devi
es, �les, network-streams,. . .).
This makes it very similar to Pure data and other mem-

bers of the Max-family. (However, Pd and friends have a
strong fo
us on audio pro
essing. With various extensions
(e.g. Gem, pdp,. . .), Pd
an also handle streams of other
media types.) These streams have little to do with ea
h
other: for instan
e it is not possible, to
onne
t a pdp pa
ket
stream to a [da
 ℄ obje
t (whi
h makes sense). However,
it is also not possible to multiplex several media streams
together into a new stream. Instead, streams have to be
separated at the sour
e-obje
ts, kept separately for pro
ess-
ing and only at the sink obje
t, streams
an be made into
a single stream again. For an example see Fig.1: the multi-
modal stream
ontained in a movie-�le has to be demulti-
plexed into it's
omponents (#1: video (pdp) stream; #2
audio stream (left); #3 audio stream (right)) by the sour
e
obje
t. The
omponents are then transformed individually
(e.g. delayed). Finally the separate streams are multiplexed
into a network-stream in the sink obje
t.
This of
ourse o�ers great �exibility, as all streams
an be

transformed di�erently and independent of ea
h other.
GStreamer on the other side, is totally media agnosti
:

It doesn't know (nor
are), whi
h streams �ow from one
graph-node to the next (see Fig.2).
Sin
e
onne
ting arbitrary stream sour
es to arbitrary

stream sinks does not make sense most of the time, GStreamer
provides a me
hanism to (automagi
ally, if desired) negoti-
ate whi
h sub-streams are eventually passed from one node

pdp_qt~

pdp_theonice~

pdp_del 20 del~ 1000 del~ 1000

demultiplex media-stream

multiplex media-stream

#1 #2 #3

Figure 1: a multi-modal stream has to be split into
separate streams within Pd

delay filesinkdv1394src

Figure 2: a multi-modal stream in GStreamer,
on-
taining 1 video stream and 2 audio streams

to another (e.g. a sink interfa
ing the sound
ard will only
not be interested in the video portion of a multi-modal
stream). An example is given in Fig.3

dv1394src audiosinkdvdemux

Figure 3: GStreamer auto-negotiation: audiosink
will only re
eive the audio-substream

This
omes at the
ost of relatively low level intera
tion
with media-streams. E.g. for reading and displaying an
ogg/vorbis �le, the pipeline has to deal with ogg-streams (as
read from the �le), vorbis-streams (as demultiplexed from
the ogg-stream) and audio-streams (as de
oded from the
vorbis-stream). These various streams are not hidden from
the user (unlike in Pd, where the user just sees one or several
audio-streams
oming out of the [oggamp�℄ obje
t).

3. GSTREAMER

3.1 Elements & Pads
A basi
 GST pipeline
onsists of so
alled elements, whi
h

is analogous to a Pd obje
t.
An element
an have any number of pads to send and

re
eive streams from other elements. A pad always has a di-
re
tion: sour
e pads are used to send data from the element
(therefore being an equivalent of an outlet in Pd), and sink
pads re
eive data (an inlet in Pd lingo).
In Pd, an obje
t's in- and outlets are de�ned at instanti-

ation time. In GStreamer, this need not be the
ase: a dy-
nami
 pad
an appear and vanish at runtime. For instan
e,
a movie �le might
ontain only a video tra
k, or a video
tra
k and an audio tra
k. How many streams are present
will only be known after a
ertain �le has been read by a

previously instantiated element. The element will therefore

reate (and destroy) available sour
e pads as the respe
tive
streams be
ome available.

3.2 Bins
A number of (inter
onne
ted) elements
an be
ontained

within a so-
alled bin. Bins
an then be re-used like ordinar-
ily elements. This
orresponds to Pd's
on
ept of abstra
-
tions.

3.3 Communication
In order to
ommuni
ate with an element, two me
ha-

nisms are used by GStreamer: properties and signals.
Properties are quasi-stati
 states of the element. They
an

be used e.g. to tell a �le-reading element �lesr
, whi
h �le
it should read. All properties are a key/value-pair, where
the key is a symboli
 name. The value
an be an arbitrary

omplex stru
ture, the type of whi
h
an be queried at run-
time.
Properties
an be queried or set or both, depending on

their nature, at any time in the live of an element. For in-
stan
e, the number of (dynami
) pads an element
urrently
has, is a read-only property, whi
h may have di�erent values
depending on the
urrently pro
essed stream.
Sin
e GST elements are heavily multi-threaded, a me
h-

anism is needed in order to
ommuni
ate with the parent
appli
ation (whi
h is potentially thread-unaware - like Pd).
GStreamer implements this by using signals whi
h are sent
to a bus. The parent appli
ation
an then poll this bus to
see, whether an element has emitted a signal, and distribute
any available messages within it's own
ontext.
Signals are used for instan
e to tell the parent appli
ation

that the End-Of-Stream has been rea
hed, or to dynami
ally
inform the appli
ation about embedded meta-data (e.g.: au-
thor of a song).

4. LANGUAGE BINDINGS FOR PD
Sin
e Pd and GStreamer are
on
eptually very similar,

reating Pd bindings for GStreamer is rather straightfor-
ward.

4.1 Elements are objects
Ea
h GST element gets mapped to a
orresponding Pd

obje
t Due to the dynami
 availability of GST elements, this
is done by means of a sys_loader. Sin
e pads in GStreamer

an be dynami
 and appear/disappear randomly, they do
not map to Pd's in-/outlets so well. It was therefore de
ided
to
reate a single outlet for all sour
e pads of an element (and
vi
e-versa for inlets and sink pads).
Whi
h pads will a
tually be
onne
ted between two ele-

ments is negotiated at runtime, by a me
hanism GStreamer

alls
aps negotiation.
aps is an abbreviation for
apabili-
ties, and is used to des
ribe the streams a
ertain pad
an
generate (if it is a sour
e pad) or a

ept (if it is a sink pad).
Sin
e this is sometimes ambiguous, it is possible to restri
t
the possibilities by using so
alled
aps�lters.1

GST bins have their natural equivalent in Pd's subpat
hes
and abstra
tions.

4.2 Controlling GStreamer
1
aps�lters are built into GStreamer. PdGst uses them in
order to
ir
umvent the problem of dynami
 pads.

Figure 4: a simple PdGst pat
h that sends an
ogg/theora stream to an i
e
ast2 server

In order to
ontrol the entire GST graph within a bin, the
obje
t [pdgst℄ is introdu
ed. The main purpose from the
users point of view of this obje
t is to initiate the building
of the graph and to turn on/o� it's exe
ution.
It is therefore similar to Gem's [gemwin℄ obje
t, whi
h

ontrols (apart from handling the the rendering window it-
self) the building and exe
ution of Gem's render-graph.
It is also
onne
ted to the bin's bus in order to
at
h gen-

eral signals that are not
aught by spe
i�
 elements/obje
ts
(see 4.3).
Finally, GStreamer allows some more operations on the

entire bin, whi
h is
ontrolled by [pdgst℄ as well, e.g. ex-
porting and importing the graph to/from XML-�les.

4.3 Controlling elements
The main way to
hange the behaviour of an element, is

setting it's properties. Therefore, ea
h PdGst obje
t will
register methods for ea
h property-key, whi
h
an be used
to both set and query that value of a
ertain property. E.g.
ea
h element has a property �name�. Sending a message
[name((without arguments) to the obje
t, will make the ob-
je
t emit a message [property name myname((if the value
of �name� is
urrently �myname�). Setting a property
an
be done by spe
ifying a new value in the message: [name
newname(will set the value of �name� to �newname� (if this
is possible).
Signals on the GST bus dire
ted to a GST element, are

forwarded to the the appropriate PdGst obje
t. E.g. the
GST element id3demux will parse an mp3 stream for ID3
tags. If it en
ounters su
h a tag, it will emit a signal named
�tag�, holding the
ontents of the tag. The
orresponding
PdGst obje
t [id3demux℄ will
at
h this signal and output

a message like tag author Mi
hael Ja
kson. Note that
strings will be
onverted into a single symbol, e.g. �Mi
hael
Ja
kson� will be
ome a Pd symbol with a spa
e!

4.4 Pd Streams
PdGst as des
ribed so far, only allows building and
on-

trolling GST pipelines within Pd. It does not o�er any
methods for adding Pd-native streams (e.g. audio-signals,
pdp pa
kets, Gem pixes) into the pipeline nor for extra
ting
streams from the pipeline yet.
For this, we introdu
e several bridging obje
ts into the

various domains:

• [pdgst_in�℄, [pdgst_out�℄

• [pix_gstin℄, [pix_gstout℄

• [pdp_gstin℄, [pdp_gstout℄

For an example pat
h that
onne
ts GST media-streams
to Pd/Gem see Fig.5.

4.5 Internal communication
PdGst obje
ts need to
ommuni
ate with ea
h other with-

out interfering with user-generated messages. There two
distin
t ways to do this:

• use Pd's messaging system (e.g.
onne
tions) with a
reserved sele
tor

•
reate a shadow
opy of the graph as expressed within
Pd with a separate message-bus that does not interfere
with Pd's

For the sake of simpli
ity and in order to be able to use
Pd's message-routing system (e.g. [spigot℄), we
hose to
use the (hen
eforth) reserved keyword �__gst� in order to
send messages from one PdGst obje
t to the other. This
means that the user is able to interfere with the internals
of PdGst, although the
han
es are rather low that this will
happen a

identally.

5. STATUS
The implementation of PdGst has been broken into sev-

eral phases, in order keep motivation of the developers high.
At the time of writing, Phase 1 is in the bug-�xing stage

and nears
ompletion. We expe
t that at least Phase 3 will
be
ompleted by the time of the PdCon09.2

5.1 Phase 1
Implementation of the basi
 GStreamer to Pd mapping.

Creating and running simple pipelines is possible. Ea
h
GST element has a
orresponding Pd obje
t
lass of the same
name.

5.2 Phase 2
More advan
ed features of pipelines, like
reation of bins

as (sub)pat
hes.

2However, phases are not ne
essarily dependent on phases
with a lower ordinal number. Phase 3
an therefore be
om-
pleted before Phase 2 has even started.

Figure 5: using GST streams within Pd/Gem (mo
kup)

5.3 Phase 3
Phase 3 adds obje
ts that live in both the GStreamer

and the Pd world media-wise. This allows to dire
tly and

onveniently add (e.g.) audio-streams generated in (plain)
Pd into the GST pipeline. (Before, this was only possible
using plumbing frameworks su
h as ja
k [1℄.)

5.4 Phase 4
GStreamer has built-in support for importing and export-

ing stati
 pipelines via XML-�les. There is also a syntax to
express very simple pipelines as human-readable text (e.g.
the pipeline in Fig.2
an be written as �dv1394sr
 ! delay !
�lesink�). While GStreamer
an be used as-is for exporting a
PdGst pipeline to an XML-inter
hange format, there might
be a need to import text-based des
riptions as a pat
h. A
Pd2XML
onverter might have other merits as well.

5.5 Phase 5
Up till now, PdGst relies on the [pdgst℄
ontrol obje
t,

for building and running a pipeline. From a user's point of
view, it is desirable to be able to run a pipeline without su
h
an extra housekeeping obje
t, and instead run a pipeline by
simply a
tivating it's sour
es. The
ontrol obje
t might still
be needed for se
ondary tasks (like XML import/export).

6. CONCLUSIONS
We have introdu
ed PdGst, a binding of the GStreamer

framework to Pure data.
PdGst adds the power of a high-performan
e, multi-threaded

media-agnosti
 framework to Pure data, while at the same
time retaining the �exibility and intera
tivity of Pd.
From the GStreamer point-of-view, PdGst adds the possi-

bility to easily
reate pipelines within the pat
her paradigm.

7. ACKNOWLEDGEMENTS
We would like to thank Georg and Thomas Holzmann,

who - unsu

essfully - tried to persuade us of the virtues
of GStreamer during their Google Summer of Code 2007
Proje
t. We would also like to thank Yves Degoyon and
Lluis Gomez i Bigorda, who brought ba
k GStreamer into
our lives in early 2009. Finally, a spe
ial thanks goes to the
GStreamer
ommunity available at their IRC-
hannel3, who
has been very helpful in getting PdGst running.

8. REFERENCES
[1℄ P. Davis. The ja
k audio
onne
tion kit. In Pro
. of the

Linux Audio Developer Conferen
e. ZKM Karlsruhe,
2003.

[2℄ Y. Degoyon, L. Gomez i Bigorda, and T. de la O. Pidip
is de�nitely in pie
es.
http://pure-data.svn.sour
eforge.net/viewv
/
pure-data/trunk/externals/pidip/, 2002.

3ir
://freenode.org/gstreamer

[3℄ O. Matthes. pdogg - a
olle
tion of ogg/vorbis externals
for pd. http://pure-data.svn.sour
eforge.net/
viewv
/pure-data/trunk/externals/pdogg/, 2002.

[4℄ W. Taymans, S. Baker, A. Wingo, R. S. Bultje, and
S. Kost. GStreamer appli
ation development manual
(0.10.22), 2009.

[5℄ G. team. Gstreamer: open sour
e multimedia
framework. http://www.gstreamer.net/, 2001.

