
PdGst - GStreamer bindings for Pd

IOhannes m zmölnig
Institute of Electronic Music and Acoustics

University of Music and Dramatic Arts
Graz, Austria

zmoelnig@iem.at

ABSTRACT
In this paper we present PdGst, a language binding of the
popular GStreamer framework to the Pd-world. On the Pd
side, this enables simple handling of multi-threaded media-
pipelines. On the GStreamer side, the bene�ts lay mainly in
the ease of onstrution of new pipelines within the pather
paradigm and in the simpliity of ontrol of and intera-
tion with GStreamer (GST) elements within the Pure data
environment.

Keywords
Pure data, GStreamer, frameworks, multimedia

1. MOTIVATION
Pure data (inluding it's various extensions) laims to be

useable as a linear prodution tool. This laim holds true
in Pd's ore domain, live audio proessing (with the main
domain-spei� interfae to the real world being the sound
ard). To a ertain extent, this laim holds true for di�erent
domains like live video proessing as well, as long as the set
of interfaes to the real world is on�ned to �live� interfaes,
e.g. video apture ards and VGA output.
However, things start to beome more ompliated when

the interfaes are wrapped into ontainers, as is usual with
�les and (worse) with streaming media.
Interfaing with �les is - to a ertain extent - made easy

on proprietary platforms like Ma-OS or W32, where the
operating system provides a uni�ed API for aessing this
data. Unfortunately on free operating systems like Linux no
suh uni�ed API has established itself yet, and few of the
existing APIs are supported by the various Pd extensions.
Interfaing with more omplex media like network streams

is barely supported at all, no matter whih platform.
While there are solutions for pushing network streams,

these seem to be unstable and expose inonsistent inter-
faes to the user. In pratie, the authors beame extremely
frustrated when trying to reate either multihannel au-
dio streams (e.g. a 10-hannel ogg/vorbis stream using the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. PdCon09, July 19-26, 2009, São Paulo, SP, Brazil.
Copyright remains with the author(s).
Copyright 2009. Copyright remains with the author(s).

pdogg-library[3℄, whih works well enough for stereo streams)
or a simple ogg/theora video stream (using [pdp_theonie�℄
whih is part of the PiDiP-library[2℄).
Due to approahing deadlines, no time was invested into

debugging and �xing the existing objets, but instead the
streaming was re-written from srath with the apparently
stable GStreamer[5℄ framework.
Sine GStreamer laks an interfae like Pd for real time

interation, the need for a bridge between these two (similar)
worlds was reognised.

2. INTRODUCTION
�GStreamer is a framework for reating streaming media

appliations� [4℄. It is a high-performane, heavily multi-
threaded, ross-platform framework that is based on graphs
of low-level media-handling omponents, allowing applia-
tion developers to reate appliations that read media-streams
from virtually any soure (devies, �les, network-streams,
generators,. . .), apply transformations on them, demulti-
plex and multiplex them and �nally output these streams
to virtually any sink (devies, �les, network-streams,. . .).
This makes it very similar to Pure data and other mem-

bers of the Max-family. (However, Pd and friends have a
strong fous on audio proessing. With various extensions
(e.g. Gem, pdp,. . .), Pd an also handle streams of other
media types.) These streams have little to do with eah
other: for instane it is not possible, to onnet a pdp paket
stream to a [da ℄ objet (whih makes sense). However,
it is also not possible to multiplex several media streams
together into a new stream. Instead, streams have to be
separated at the soure-objets, kept separately for proess-
ing and only at the sink objet, streams an be made into
a single stream again. For an example see Fig.1: the multi-
modal stream ontained in a movie-�le has to be demulti-
plexed into it's omponents (#1: video (pdp) stream; #2
audio stream (left); #3 audio stream (right)) by the soure
objet. The omponents are then transformed individually
(e.g. delayed). Finally the separate streams are multiplexed
into a network-stream in the sink objet.
This of ourse o�ers great �exibility, as all streams an be

transformed di�erently and independent of eah other.
GStreamer on the other side, is totally media agnosti:

It doesn't know (nor are), whih streams �ow from one
graph-node to the next (see Fig.2).
Sine onneting arbitrary stream soures to arbitrary

stream sinks does not make sense most of the time, GStreamer
provides a mehanism to (automagially, if desired) negoti-
ate whih sub-streams are eventually passed from one node

pdp_qt~

pdp_theonice~

pdp_del 20 del~ 1000 del~ 1000

demultiplex media-stream

multiplex media-stream

#1 #2 #3

Figure 1: a multi-modal stream has to be split into
separate streams within Pd

delay filesinkdv1394src

Figure 2: a multi-modal stream in GStreamer, on-
taining 1 video stream and 2 audio streams

to another (e.g. a sink interfaing the sound ard will only
not be interested in the video portion of a multi-modal
stream). An example is given in Fig.3

dv1394src audiosinkdvdemux

Figure 3: GStreamer auto-negotiation: audiosink
will only reeive the audio-substream

This omes at the ost of relatively low level interation
with media-streams. E.g. for reading and displaying an
ogg/vorbis �le, the pipeline has to deal with ogg-streams (as
read from the �le), vorbis-streams (as demultiplexed from
the ogg-stream) and audio-streams (as deoded from the
vorbis-stream). These various streams are not hidden from
the user (unlike in Pd, where the user just sees one or several
audio-streams oming out of the [oggamp�℄ objet).

3. GSTREAMER

3.1 Elements & Pads
A basi GST pipeline onsists of so alled elements, whih

is analogous to a Pd objet.
An element an have any number of pads to send and

reeive streams from other elements. A pad always has a di-
retion: soure pads are used to send data from the element
(therefore being an equivalent of an outlet in Pd), and sink
pads reeive data (an inlet in Pd lingo).
In Pd, an objet's in- and outlets are de�ned at instanti-

ation time. In GStreamer, this need not be the ase: a dy-
nami pad an appear and vanish at runtime. For instane,
a movie �le might ontain only a video trak, or a video
trak and an audio trak. How many streams are present
will only be known after a ertain �le has been read by a

previously instantiated element. The element will therefore
reate (and destroy) available soure pads as the respetive
streams beome available.

3.2 Bins
A number of (interonneted) elements an be ontained

within a so-alled bin. Bins an then be re-used like ordinar-
ily elements. This orresponds to Pd's onept of abstra-
tions.

3.3 Communication
In order to ommuniate with an element, two meha-

nisms are used by GStreamer: properties and signals.
Properties are quasi-stati states of the element. They an

be used e.g. to tell a �le-reading element �lesr, whih �le
it should read. All properties are a key/value-pair, where
the key is a symboli name. The value an be an arbitrary
omplex struture, the type of whih an be queried at run-
time.
Properties an be queried or set or both, depending on

their nature, at any time in the live of an element. For in-
stane, the number of (dynami) pads an element urrently
has, is a read-only property, whih may have di�erent values
depending on the urrently proessed stream.
Sine GST elements are heavily multi-threaded, a meh-

anism is needed in order to ommuniate with the parent
appliation (whih is potentially thread-unaware - like Pd).
GStreamer implements this by using signals whih are sent
to a bus. The parent appliation an then poll this bus to
see, whether an element has emitted a signal, and distribute
any available messages within it's own ontext.
Signals are used for instane to tell the parent appliation

that the End-Of-Stream has been reahed, or to dynamially
inform the appliation about embedded meta-data (e.g.: au-
thor of a song).

4. LANGUAGE BINDINGS FOR PD
Sine Pd and GStreamer are oneptually very similar,

reating Pd bindings for GStreamer is rather straightfor-
ward.

4.1 Elements are objects
Eah GST element gets mapped to a orresponding Pd

objet Due to the dynami availability of GST elements, this
is done by means of a sys_loader. Sine pads in GStreamer
an be dynami and appear/disappear randomly, they do
not map to Pd's in-/outlets so well. It was therefore deided
to reate a single outlet for all soure pads of an element (and
vie-versa for inlets and sink pads).
Whih pads will atually be onneted between two ele-

ments is negotiated at runtime, by a mehanism GStreamer
alls aps negotiation. aps is an abbreviation for apabili-
ties, and is used to desribe the streams a ertain pad an
generate (if it is a soure pad) or aept (if it is a sink pad).
Sine this is sometimes ambiguous, it is possible to restrit
the possibilities by using so alled aps�lters.1

GST bins have their natural equivalent in Pd's subpathes
and abstrations.

4.2 Controlling GStreamer
1aps�lters are built into GStreamer. PdGst uses them in
order to irumvent the problem of dynami pads.

Figure 4: a simple PdGst path that sends an
ogg/theora stream to an ieast2 server

In order to ontrol the entire GST graph within a bin, the
objet [pdgst℄ is introdued. The main purpose from the
users point of view of this objet is to initiate the building
of the graph and to turn on/o� it's exeution.
It is therefore similar to Gem's [gemwin℄ objet, whih

ontrols (apart from handling the the rendering window it-
self) the building and exeution of Gem's render-graph.
It is also onneted to the bin's bus in order to ath gen-

eral signals that are not aught by spei� elements/objets
(see 4.3).
Finally, GStreamer allows some more operations on the

entire bin, whih is ontrolled by [pdgst℄ as well, e.g. ex-
porting and importing the graph to/from XML-�les.

4.3 Controlling elements
The main way to hange the behaviour of an element, is

setting it's properties. Therefore, eah PdGst objet will
register methods for eah property-key, whih an be used
to both set and query that value of a ertain property. E.g.
eah element has a property �name�. Sending a message
[name((without arguments) to the objet, will make the ob-
jet emit a message [property name myname((if the value
of �name� is urrently �myname�). Setting a property an
be done by speifying a new value in the message: [name
newname(will set the value of �name� to �newname� (if this
is possible).
Signals on the GST bus direted to a GST element, are

forwarded to the the appropriate PdGst objet. E.g. the
GST element id3demux will parse an mp3 stream for ID3
tags. If it enounters suh a tag, it will emit a signal named
�tag�, holding the ontents of the tag. The orresponding
PdGst objet [id3demux℄ will ath this signal and output

a message like tag author Mihael Jakson. Note that
strings will be onverted into a single symbol, e.g. �Mihael
Jakson� will beome a Pd symbol with a spae!

4.4 Pd Streams
PdGst as desribed so far, only allows building and on-

trolling GST pipelines within Pd. It does not o�er any
methods for adding Pd-native streams (e.g. audio-signals,
pdp pakets, Gem pixes) into the pipeline nor for extrating
streams from the pipeline yet.
For this, we introdue several bridging objets into the

various domains:

• [pdgst_in�℄, [pdgst_out�℄

• [pix_gstin℄, [pix_gstout℄

• [pdp_gstin℄, [pdp_gstout℄

For an example path that onnets GST media-streams
to Pd/Gem see Fig.5.

4.5 Internal communication
PdGst objets need to ommuniate with eah other with-

out interfering with user-generated messages. There two
distint ways to do this:

• use Pd's messaging system (e.g. onnetions) with a
reserved seletor

• reate a shadow opy of the graph as expressed within
Pd with a separate message-bus that does not interfere
with Pd's

For the sake of simpliity and in order to be able to use
Pd's message-routing system (e.g. [spigot℄), we hose to
use the (heneforth) reserved keyword �__gst� in order to
send messages from one PdGst objet to the other. This
means that the user is able to interfere with the internals
of PdGst, although the hanes are rather low that this will
happen aidentally.

5. STATUS
The implementation of PdGst has been broken into sev-

eral phases, in order keep motivation of the developers high.
At the time of writing, Phase 1 is in the bug-�xing stage

and nears ompletion. We expet that at least Phase 3 will
be ompleted by the time of the PdCon09.2

5.1 Phase 1
Implementation of the basi GStreamer to Pd mapping.

Creating and running simple pipelines is possible. Eah
GST element has a orresponding Pd objetlass of the same
name.

5.2 Phase 2
More advaned features of pipelines, like reation of bins

as (sub)pathes.

2However, phases are not neessarily dependent on phases
with a lower ordinal number. Phase 3 an therefore be om-
pleted before Phase 2 has even started.

Figure 5: using GST streams within Pd/Gem (mokup)

5.3 Phase 3
Phase 3 adds objets that live in both the GStreamer

and the Pd world media-wise. This allows to diretly and
onveniently add (e.g.) audio-streams generated in (plain)
Pd into the GST pipeline. (Before, this was only possible
using plumbing frameworks suh as jak [1℄.)

5.4 Phase 4
GStreamer has built-in support for importing and export-

ing stati pipelines via XML-�les. There is also a syntax to
express very simple pipelines as human-readable text (e.g.
the pipeline in Fig.2 an be written as �dv1394sr ! delay !
�lesink�). While GStreamer an be used as-is for exporting a
PdGst pipeline to an XML-interhange format, there might
be a need to import text-based desriptions as a path. A
Pd2XML onverter might have other merits as well.

5.5 Phase 5
Up till now, PdGst relies on the [pdgst℄ ontrol objet,

for building and running a pipeline. From a user's point of
view, it is desirable to be able to run a pipeline without suh
an extra housekeeping objet, and instead run a pipeline by
simply ativating it's soures. The ontrol objet might still
be needed for seondary tasks (like XML import/export).

6. CONCLUSIONS
We have introdued PdGst, a binding of the GStreamer

framework to Pure data.
PdGst adds the power of a high-performane, multi-threaded

media-agnosti framework to Pure data, while at the same
time retaining the �exibility and interativity of Pd.
From the GStreamer point-of-view, PdGst adds the possi-

bility to easily reate pipelines within the pather paradigm.

7. ACKNOWLEDGEMENTS
We would like to thank Georg and Thomas Holzmann,

who - unsuessfully - tried to persuade us of the virtues
of GStreamer during their Google Summer of Code 2007
Projet. We would also like to thank Yves Degoyon and
Lluis Gomez i Bigorda, who brought bak GStreamer into
our lives in early 2009. Finally, a speial thanks goes to the
GStreamer ommunity available at their IRC-hannel3, who
has been very helpful in getting PdGst running.

8. REFERENCES
[1℄ P. Davis. The jak audio onnetion kit. In Pro. of the

Linux Audio Developer Conferene. ZKM Karlsruhe,
2003.

[2℄ Y. Degoyon, L. Gomez i Bigorda, and T. de la O. Pidip
is de�nitely in piees.
http://pure-data.svn.soureforge.net/viewv/
pure-data/trunk/externals/pidip/, 2002.

3ir://freenode.org/gstreamer

[3℄ O. Matthes. pdogg - a olletion of ogg/vorbis externals
for pd. http://pure-data.svn.soureforge.net/
viewv/pure-data/trunk/externals/pdogg/, 2002.

[4℄ W. Taymans, S. Baker, A. Wingo, R. S. Bultje, and
S. Kost. GStreamer appliation development manual
(0.10.22), 2009.

[5℄ G. team. Gstreamer: open soure multimedia
framework. http://www.gstreamer.net/, 2001.

