PdGst - GStreamer bindings for Pd

IOhannes m zmdalnig
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts
Graz, Austria
zmoelnig@iem.at

ABSTRACT

In this paper we present PdGst, a language binding of the
popular GStreamer framework to the Pd-world. On the Pd
side, this enables simple handling of multi-threaded media-
pipelines. On the GStreamer side, the benefits lay mainly in
the ease of construction of new pipelines within the patcher
paradigm and in the simplicity of control of and interac-
tion with GStreamer (GST) elements within the Pure data
environment.

Keywords

Pure data, GStreamer, frameworks, multimedia

1. MOTIVATION

Pure data (including it’s various extensions) claims to be
useable as a linear production tool. This claim holds true
in Pd’s core domain, live audio processing (with the main
domain-specific interface to the real world being the sound
card). To a certain extent, this claim holds true for different
domains like live video processing as well, as long as the set
of interfaces to the real world is confined to “live” interfaces,
e.g. video capture cards and VGA output.

However, things start to become more complicated when
the interfaces are wrapped into containers, as is usual with
files and (worse) with streaming media.

Interfacing with files is - to a certain extent - made easy
on proprietary platforms like Mac-OS or W32, where the
operating system provides a unified API for accessing this
data. Unfortunately on free operating systems like Linux no
such unified API has established itself yet, and few of the
existing APIs are supported by the various Pd extensions.

Interfacing with more complex media like network streams
is barely supported at all, no matter which platform.

While there are solutions for pushing network streams,
these seem to be unstable and expose inconsistent inter-
faces to the user. In practice, the authors became extremely
frustrated when trying to create either multichannel au-
dio streams (e.g. a 10-channel ogg/vorbis stream using the

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providetddbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyooterwise, or
republish, to post on servers or to redistribute to listguees prior specific
permission and/or a fee. PdCon09, July 19-26, 2009, Sao FaR|®@razil.
Copyright remains with the author(s).

Copyright 2009. Copyright remains with the author(s).

pdogg-library|3], which works well enough for stereo streams)
or a simple ogg/theora video stream (using [pdp_theonice™]
which is part of the PiDiP-library|2]).

Due to approaching deadlines, no time was invested into
debugging and fixing the existing objects, but instead the
streaming was re-written from scratch with the apparently
stable GStreamer|[5| framework.

Since GStreamer lacks an interface like Pd for real time
interaction, the need for a bridge between these two (similar)
worlds was recognised.

2. INTRODUCTION

“GStreamer is a framework for creating streaming media
applications” [4]. It is a high-performance, heavily multi-
threaded, cross-platform framework that is based on graphs
of low-level media-handling components, allowing applica-
tion developers to create applications that read media-streams
from virtually any source (devices, files, network-streams,
generators,. ..), apply transformations on them, demulti-
plex and multiplex them and finally output these streams
to virtually any sink (devices, files, network-streams,. ..).

This makes it very similar to Pure data and other mem-
bers of the Max-family. (However, Pd and friends have a
strong focus on audio processing. With various extensions
(e.g. Gem, pdp,...), Pd can also handle streams of other
media types.) These streams have little to do with each
other: for instance it is not possible, to connect a pdp packet
stream to a [dac] object (which makes sense). However,
it is also not possible to multiplex several media streams
together into a new stream. Instead, streams have to be
separated at the source-objects, kept separately for process-
ing and only at the sink object, streams can be made into
a single stream again. For an example see Fig.1: the multi-
modal stream contained in a movie-file has to be demulti-
plexed into it’s components (#1: video (pdp) stream; #2
audio stream (left); #3 audio stream (right)) by the source
object. The components are then transformed individually
(e.g. delayed). Finally the separate streams are multiplexed
into a network-stream in the sink object.

This of course offers great flexibility, as all streams can be
transformed differently and independent of each other.

GStreamer on the other side, is totally media agnostic:
It doesn’t know (nor care), which streams flow from one
graph-node to the next (see Fig.2).

Since connecting arbitrary stream sources to arbitrary
stream sinks does not make sense most of the time, GStreamer
provides a mechanism to (automagically, if desired) negoti-
ate which sub-streams are eventually passed from one node

denul ti pl ex nmedi a-stream

pdp_del 20

#1

pdp_t heoni ce~ nul ti pl ex nedia-stream

Figure 1: a multi-modal stream has to be split into
separate streams within Pd

dv1394src del ay filesink ‘

Figure 2: a multi-modal stream in GStreamer, con-
taining 1 video stream and 2 audio streams

to another (e.g. a sink interfacing the sound card will only
not be interested in the video portion of a multi-modal
stream). An example is given in Fig.3

dv1394src dvdenux audi osi nk ‘

Figure 3: GStreamer auto-negotiation: audiosink
will only receive the audio-substream

This comes at the cost of relatively low level interaction
with media-streams. E.g. for reading and displaying an
ogg/vorbis file, the pipeline has to deal with ogg-streams (as
read from the file), vorbis-streams (as demultiplexed from
the ogg-stream) and audio-streams (as decoded from the
vorbis-stream). These various streams are not hidden from
the user (unlike in Pd, where the user just sees one or several
audio-streams coming out of the [oggamp~] object).

3. GSTREAMER
3.1 Elements& Pads

A basic GST pipeline consists of so called elements, which
is analogous to a Pd object.

An element can have any number of pads to send and
receive streams from other elements. A pad always has a di-
rection: source pads are used to send data from the element
(therefore being an equivalent of an outlet in Pd), and sink
pads receive data (an inlet in Pd lingo).

In Pd, an object’s in- and outlets are defined at instanti-
ation time. In GStreamer, this need not be the case: a dy-
namic pad can appear and vanish at runtime. For instance,
a movie file might contain only a video track, or a video
track and an audio track. How many streams are present
will only be known after a certain file has been read by a

previously instantiated element. The element will therefore
create (and destroy) available source pads as the respective
streams become available.

3.2 Bins

A number of (interconnected) elements can be contained
within a so-called bin. Bins can then be re-used like ordinar-
ily elements. This corresponds to Pd’s concept of abstrac-
tions.

3.3 Communication

In order to communicate with an element, two mecha-
nisms are used by GStreamer: properties and signals.

Properties are quasi-static states of the element. They can
be used e.g. to tell a file-reading element filesre, which file
it should read. All properties are a key/value-pair, where
the key is a symbolic name. The value can be an arbitrary
complex structure, the type of which can be queried at run-
time.

Properties can be queried or set or both, depending on
their nature, at any time in the live of an element. For in-
stance, the number of (dynamic) pads an element currently
has, is a read-only property, which may have different values
depending on the currently processed stream.

Since GST elements are heavily multi-threaded, a mech-
anism is needed in order to communicate with the parent
application (which is potentially thread-unaware - like Pd).
GStreamer implements this by using signals which are sent
to a bus. The parent application can then poll this bus to
see, whether an element has emitted a signal, and distribute
any available messages within it’s own context.

Signals are used for instance to tell the parent application
that the End-Of-Stream has been reached, or to dynamically
inform the application about embedded meta-data (e.g.: au-
thor of a song).

4. LANGUAGE BINDINGSFOR PD

Since Pd and GStreamer are conceptually very similar,
creating Pd bindings for GStreamer is rather straightfor-
ward.

4.1 Elementsareobjects

Each GST element gets mapped to a corresponding Pd
object Due to the dynamic availability of GST elements, this
is done by means of a sys loader. Since pads in GStreamer
can be dynamic and appear/disappear randomly, they do
not map to Pd’s in-/outlets so well. It was therefore decided
to create a single outlet for all source pads of an element (and
vice-versa for inlets and sink pads).

Which pads will actually be connected between two ele-
ments is negotiated at runtime, by a mechanism GStreamer
calls caps negotiation. caps is an abbreviation for capabili-
ties, and is used to describe the streams a certain pad can
generate (if it is a source pad) or accept (if it is a sink pad).
Since this is sometimes ambiguous, it is possible to restrict
the possibilities by using so called capsfilters.'

GST bins have their natural equivalent in Pd’s subpatches
and abstractions.

4.2 Controlling GStreamer

Leapsfilters are built into GStreamer. PdGst uses them in
order to circumvent the problem of dynamic pads.

bang| initialize

start
0 [stop
dgst

I
andiotestsrc
Efﬁrlpegculurspax:e| andioconvert
theoraenc vorbisenc
OO
loadbang
ip icecast.iem.at,
port 8000,
passwvord X0,
moumt gststream. ogg
shout2zend

Figure 4: a simple PdGst patch that sends an
ogg/theora stream to an icecast2 server

In order to control the entire GST graph within a bin, the
object [pdgst] is introduced. The main purpose from the
users point of view of this object is to initiate the building
of the graph and to turn on/off it’s execution.

It is therefore similar to Gem’s [gemwin] object, which
controls (apart from handling the the rendering window it-
self) the building and execution of Gem’s render-graph.

It is also connected to the bin’s bus in order to catch gen-
eral signals that are not caught by specific elements/objects
(see 4.3).

Finally, GStreamer allows some more operations on the
entire bin, which is controlled by [pdgst] as well, e.g. ex-
porting and importing the graph to/from XML-files.

4.3 Controlling elements

The main way to change the behaviour of an element, is
setting it’s properties. Therefore, each PdGst object will
register methods for each property-key, which can be used
to both set and query that value of a certain property. E.g.
each element has a property “name”. Sending a message
[name ((without arguments) to the object, will make the ob-
ject emit a message [property name myname((if the value
of “name” is currently “myname”). Setting a property can
be done by specifying a new value in the message: [name
newname (will set the value of “name” to “newname” (if this
is possible).

Signals on the GST bus directed to a GST element, are
forwarded to the the appropriate PdGst object. E.g. the
GST element id3demuz will parse an mp3 stream for ID3
tags. If it encounters such a tag, it will emit a signal named
“tag”, holding the contents of the tag. The corresponding
PdGst object [id3demux] will catch this signal and output

a message like tag author Michael Jackson. Note that
strings will be converted into a single symbol, e.g. “Michael
Jackson” will become a Pd symbol with a space!

4.4 Pd Streams

PdGst as described so far, only allows building and con-
trolling GST pipelines within Pd. It does not offer any
methods for adding Pd-native streams (e.g. audio-signals,
pdp packets, Gem pixes) into the pipeline nor for extracting
streams from the pipeline yet.

For this, we introduce several bridging objects into the
various domains:

e [pdgst_in~], [pdgst_out~]
e [pix_gstin], [pix_gstout]

e [pdp_gstin], [pdp_gstout]

For an example patch that connects GST media-streams
to Pd/Gem see Fig.5.

45 Internal communication

PdGst objects need to communicate with each other with-
out interfering with user-generated messages. There two
distinct ways to do this:

e use Pd’s messaging system (e.g. connections) with a
reserved selector

e create a shadow copy of the graph as expressed within
Pd with a separate message-bus that does not interfere
with Pd’s

For the sake of simplicity and in order to be able to use
Pd’s message-routing system (e.g. [spigot]), we chose to
use the (henceforth) reserved keyword “__gst” in order to
send messages from one PdGst object to the other. This
means that the user is able to interfere with the internals
of PdGst, although the chances are rather low that this will
happen accidentally.

5. STATUS

The implementation of PdGst has been broken into sev-
eral phases, in order keep motivation of the developers high.

At the time of writing, Phase 1 is in the bug-fixing stage
and nears completion. We expect that at least Phase 3 will
be completed by the time of the PdCon09.

5.1 Phasel

Implementation of the basic GStreamer to Pd mapping.
Creating and running simple pipelines is possible. Each
GST element has a corresponding Pd objectclass of the same
name.

5.2 Phase?2

More advanced features of pipelines, like creation of bins
as (sub)patches.

2However, phases are not necessarily dependent on phases
with a lower ordinal number. Phase 8 can therefore be com-
pleted before Phase 2 has even started.

bang initialize

pdgst

start
T stap

locatiom

http: //gstreamer . freedeskop . org/media/ small/cooldance . ogg

[p:i.x_texture

rotateXyYZ 90 0 235

sphere 2.5|

Figure 5: using GST streams within Pd/Gem (mockup)

5.3 Phase3

Phase 8 adds objects that live in both the GStreamer
and the Pd world media-wise. This allows to directly and
conveniently add (e.g.) audio-streams generated in (plain)
Pd into the GST pipeline. (Before, this was only possible
using plumbing frameworks such as jack [1].)

54 Phase4

GStreamer has built-in support for importing and export-
ing static pipelines via XML-files. There is also a syntax to
express very simple pipelines as human-readable text (e.g.
the pipeline in Fig.2 can be written as “dv1394src ! delay !
filesink”). While GStreamer can be used as-is for exporting a
PdGst pipeline to an XML-interchange format, there might
be a need to import text-based descriptions as a patch. A
Pd2XML converter might have other merits as well.

55 Phase5

Up till now, PdGst relies on the [pdgst] control object,
for building and running a pipeline. From a user’s point of
view, it is desirable to be able to run a pipeline without such
an extra housekeeping object, and instead run a pipeline by
simply activating it’s sources. The control object might still
be needed for secondary tasks (like XML import/export).

6. CONCLUSIONS
We have introduced PdGst, a binding of the GStreamer

framework to Pure data.

PdGst adds the power of a high-performance, multi-threaded
media-agnostic framework to Pure data, while at the same
time retaining the flexibility and interactivity of Pd.

From the GStreamer point-of-view, PdGst adds the possi-
bility to easily create pipelines within the patcher paradigm.

7. ACKNOWLEDGEMENTS

We would like to thank Georg and Thomas Holzmann,
who - unsuccessfully - tried to persuade us of the virtues
of GStreamer during their Google Summer of Code 2007
Project. We would also like to thank Yves Degoyon and
Lluis Gomez i Bigorda, who brought back GStreamer into
our lives in early 2009. Finally, a special thanks goes to the
GStreamer community available at their IRC-channel®, who
has been very helpful in getting PdGst running.

8. REFERENCES

[1] P. Davis. The jack audio connection kit. In Proc. of the
Linuzx Audio Developer Conference. ZKM Karlsruhe,
2003.

[2] Y. Degoyon, L. Gomez i Bigorda, and T. de la O. Pidip
is definitely in pieces.
http://pure-data.svn.sourceforge.net/viewvc/
pure-data/trunk/externals/pidip/, 2002.

3irc://freenode.org/gstreamer

[3] O. Matthes. pdogg - a collection of ogg/vorbis externals
for pd. http://pure-data.svn.sourceforge.net/
viewvc/pure-data/trunk/externals/pdogg/, 2002.

[4] W. Taymans, S. Baker, A. Wingo, R. S. Bultje, and
S. Kost. GStreamer application development manual
(0.10.22), 20009.

[5] G. team. Gstreamer: open source multimedia
framework. http://www.gstreamer.net/, 2001.

